C1q-deficiency is neuroprotective against hypoxic-ischemic brain injury in neonatal mice.
نویسندگان
چکیده
BACKGROUND AND PURPOSE This study was undertaken to determine whether the initial component of the classical complement (C) activation pathway contributes to hypoxic-ischemic brain injury in neonatal mice. METHODS Hypoxia-ischemia (HI) was produced in C1q(-/-) and wild-type (WT) neonatal mice. At 24 hours after HI, neonatal mouse reflex performance and cerebral infarct volume were assessed. Long-term outcomes were measured by water-maze performance and degree of cerebral atrophy at 7 to 8 weeks after HI. Activation of circulating neutrophils, and C1q, C3, and neutrophil deposition in brains were examined. RESULTS C1q(-/-) mice were significantly protected against HI (mean+/-SE infarct volume in C1q(-/-) mice=17.3+/-5.5% versus 53.6+/-6.8% in WT mice; P<0.0001) and exhibited significantly less neurofunctional deficit compared with WT mice. Immunostaining revealed significantly greater deposition of C3 (and C1q) as well as granulocytes in the infarcted brains in WT mice compared with C1q(-/-) animals. Activation of circulating leukocytes was significantly decreased in C1q(-/-) mice compared with WT mice, which correlated strongly (r=0.7) with cerebral infarct volumes. CONCLUSIONS Cerebral deposition of C1q and C3 after hypoxic-ischemic insult is associated with significantly greater neurologic damage in WT mice compared with C1q(-/-) mice, providing strong evidence that the classical C pathway contributes to the hypoxic-ischemic brain injury. Significantly decreased activation of circulating neutrophils associated with diminished local accumulation and attenuation of brain injury in C1q(-/-) mice suggests a potential cellular mechanism by which C1q mediates neurodegeneration in HI.
منابع مشابه
Complement component c1q mediates mitochondria-driven oxidative stress in neonatal hypoxic-ischemic brain injury.
Hypoxic-ischemic (HI) brain injury in infants is a leading cause of lifelong disability. We report a novel pathway mediating oxidative brain injury after hypoxia-ischemia in which C1q plays a central role. Neonatal mice incapable of classical or terminal complement activation because of C1q or C6 deficiency or pharmacologically inhibited assembly of membrane attack complex were subjected to hyp...
متن کاملUsing the endocannabinoid system as a neuroprotective strategy in perinatal hypoxic-ischemic brain injury
One of the most important causes of brain injury in the neonatal period is a perinatal hypoxic-ischemic event. This devastating condition can lead to long-term neurological deficits or even death. After hypoxic-ischemic brain injury, a variety of specific cellular mechanisms are set in motion, triggering cell damage and finally producing cell death. Effective therapeutic treatments against this...
متن کاملNeuroprotective agents for neonatal hypoxic-ischemic brain injury.
Hypoxic-ischemic (H-I) brain injury in newborns is a major cause of morbidity and mortality that claims thousands of lives each year. In this review, we summarize the promising neuroprotective agents tested on animal models and pilot clinical studies of neonatal H-I brain injury according to the different phases of the disease. These agents target various phases of injury including the early ph...
متن کاملNAP enhances neurodevelopment of newborn apolipoprotein E-deficient mice subjected to hypoxia.
Perinatal hypoxic injury is associated with significant neonatal morbidity and long-term neurodevelopmental complications. NAP, a peptide derived from ADNP (activity-dependent neuroprotective protein), has previously shown neuroprotective abilities in various adult animal models. To evaluate its neuroprotective role in neonatal hypoxic-ischemic injury, we evaluated the neurodevelopmental outcom...
متن کاملNeuroprotective effects of Tiliacora triandra leaf extract in a mice model of cerebral ischemia reperfusion
Objective: The present study investigated possible neuroprotective effects of ethanolic extract of Tiliacora triandra leaf against cerebral ischemic-reperfusion injury in mice. Materials and Methods: Forty male Institute of Cancer Research (ICR) mice were randomly divided into five groups: (1) Sham + 10% Tween 80, (2) bilateral common carotid artery occlu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Stroke
دوره 36 10 شماره
صفحات -
تاریخ انتشار 2005